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Abstract

A random mapping is a random graph where every vertex has outdegree one. Previous
work was concerned mostly with a uniform probability distribution on these mappings.
In contrast, this investigation assumes a non-uniform model, where different mappings
have different probabilities.

~An important application is the analysis of a factorization heuristic due to Pollard
and Brent. The model involved is a random mapping where every vertex has indegree
either 0 or d. This distribution belongs to a class called permutation snvariant. A study
of the general properties of permutation invariant mappings combined with the analysis
of this particular distribution made possible the computation of the expected running
time of this factorization method, settling an open conjecture of Pollard. . -+
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Introduction

The main objective of this dissertation is the study of finite random functions under
the assumption that different functions might have different probabilities.

There exists already a relatively large literature about random functions; more
than thirty journal articles in the last twenty five years have been inspired by var-
ious problems in statistics, probability theory, and biomathematics. In computer
science, random mappings appear in the analysis of hashing algorithms, random
number generators, cryptography problems, and integer factorization algorithms.
Most of the published results concern the uniform probability distribution on the
space of random functions; a uniform model is inadequate for the precise study of
certain algorithms, which motivated the present work.

The first chapter introduces a certain type of probability distribution on the
space of random mappings, called permutation invariant, that turns out to be a
key concept in the analysis that follows. Using combinatorial methods it is shown
that for permutation invariant distributions the random variables of interest are
related in simple and unexpected ways, and it is enough to know the probability
generating function for one of the variables to compute the probability generating
functions for the others.

These results are applied in the second chapter to the uniform distribution
model to obtain in a simple and consistent manner most of the previously known
results as well as some new or sharper formul®. Through the use of novel Abel
type identities and the algebra of Q-series, all the results are expressed in terms
of the Q-functions, thus explaining some of the “mysteriously® similar asymptotic
behavior already noted in the literature. The last sections of chapter two do not
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Chapter 1
Permutation invariant mappings

1.1. Introduction and notations

A mapping is a function from a set into itself. The graph of a mapping f is a
directed graph where every node has outdegree one; it consists of a collection of
directed trees with their roots linked into directed loops. The elements that are
part of a loop are called eyclic or recurrent. (That is, an element z is recurrent
iff there exists j > 0 such that f/(z) = z.) The restriction of f to the recurrent
elements is clearly a permutation of those elements.

The set of n™ functions f : {1,...,n} = {1,...,n} is denoted F|n]. To each’

f € F|n] we associate a probability weight w(f), such that 3~ €F(n) w(f)=1.

A probability weight w is called permutation snvariant if for any permutation
pof {1,...,n}, and for any function f, we have w(f) = w(pof), where the notation
pof is defined by (pof)(z) = f(p(z)). An equivalent definition is that a probability
weight is permutation invariant if any two functions that have as their image the
same multiset, are equally likely. Indeed, consider two functions f and g such that
1({1,...,n}) = g({1,...,n}) as multisets. Then there exists a permutation p such
that g=po f.)

As an example of a permutation invariant distribution consider the weight




Chapter 1: Permutation inveriant mappings

defined, for a fixed set A C {1,...,n} of size k, by the rule
W(f) _ {l/k"v lf,(I)E Afor1<z<n;

0, ctherwise,
This weight is permutation invariant because for any permutation p, of {1,...,n},
if f(z) € Afor1 < z < n, then f(p(z)) € A for 1 < z < n. More gener-
ally, if (wy,...,wa) are any weights that sum to 1, the weight function w(f) =
Wy(1) - Wy(n) is permutation invariant.

As an example of a weight that is not permutation invariant consider
1/n!, f f(z)<zfor1<z<nm

win ={

Let f be a function in F[n]. Define a sequence z;,; = f(z,). This sequence is
ultimately periodic for every zo, and there exist numbers A and g, which depend
on zo, such that zo,...,Z,4+a-1 are distinct, but z,42 = z;, for ¢ > u. The number
A(zo, f) is called the cycle length, and the number u(zo, f) is called the tail length.
The cycle length is always positive, but the tail length can be 0. In fact, zo is
cyclic if and only if u(zo, f) = 0.

otherwise,

Having fixed a probability weight on F[n] we can define the following two
random variables: u(z) = the length of the tail starting from a certain element z
and A(z) = the length of the period starting from z. We also define the random
variables A and u that represent the length of the tail, and the length of the period,
when f is chosen in F[n| according to the probability weight w, and the starting
point is chosen uniformly at random in the set {1,...,n}. Hence in this case the
probability space is F[n] x {1,...,n}, while in the former case it was F|n] only.
To avoid confusion, we shall use the notation Pr(X) to mean the probability of
the event X when the probability space is F[n] and the notation Pr(X) when the
probability space is F[n] x {1,...,n}. Similar conventions apply to E, var, and
€or.

From this definition it follows that

Pr(A=k) = ;1; 3 Pr(A(z) =4), (1.1)
2€(1,...,n} .
and similarly
Fiu=k)=> Y Pr(u(z)=k). (12)
z€(1,...,n}

Yet another random variable of interest is 7, the total number of cyclic ele-
ments. (The probability space for r is always F[n].) The nice thing about permu-
tation invariant weights is that there exist simple relations between the probability
distributions of A, 4, and r. We shall explore these relationships in the next sec-

tions.




Chapter 1: Permutation invariant mappings

1.2. The distribution of A and u

Lemma 1. Given a permutaticn invariant probability weight w on F|n)], for any
fixed starting point z € {1,...,n}

Pr(A(z) =14 and u(z) = j|zis not cyclic)
=Pr(A(z) = j and p(z) =]z is not cyclic).

Proof: The idea of the proof is to show a 1-1 correspondence between mappings
where A(z) = ¢ and p(z) = j and mappings where A(z) = j and u(z) =3.

Consider a mapping f such that Az,f) = ¢ and u(z,f) = j. (Because z is
not cyclic, j must be strictly pesitive.) Consider another mapping g, identical
to f everywhere except for the points z and f/(z) where g(z) = f(f’(z)) and
9(f?(z)) = f(z). (See Figure 1.)

f: e »e Mg/:-l

z  f(2) f(z) [fii-Yz)

N

a(z)

Figure 1.1. Two corresponding mappings.

It is clear that A(z,g) = j and u(z,g) = i. By construction w(g) = w(f), because w
is permutation invariant, and g = (z, f(z)) o f. Furthermore the correspondence
[ + g is one to one, and the desired result is obtained by summing the probabilities
of all f's with A(z,f) =4 and u(z,f) =). 8

[ 4]
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6 Chapter 1: Permutatinn invariant meppings

Corollary 2. Given a permutation invariant probability weight w on F[n|, for
any starting point z € {1,...,n} ; : /

Pr(u(z) = 1| z is not cyclic) = Pr(A(z) = 4| z is not cyclic).

g v T

Corollary 3. Given a permutation invariant probability weight w on F|n], for
any starting point z € {1,...,n}, and for any ¢ > 0

Pr(u(z) =1) = Pr(A(z) =i) - Pr(A(z) =i and z is cyclic).

Froof: Because s is positive
E‘ Pr(u(z) =) = Pr(u(z) =i and z is not cyclic);

Using the Bayes rule and Corollary 2, we obtain

Pr(u(z) = 1) = Pr(u(z) =i and z is not cyclic)
= Pr(z is not cyclic) Pr(p(z) = ¢ | z is not cyclic)
= Pr(z is not cyclic) Pr(A(z) = i | z is not cyclic)
=Pr(A(z) = ¢ and z is not cyclic).

For several of the following proofs it is convenient to define an equivalence
relation on F[n] as follows. Two mappings f,g € F[n| will be called similar if they
have the same set of cyclic elements, A C {1,...,n}, and f(z) = g(z) forall z ¢ A.
That means that the set of mappings similar to f is obtained by composing an
arbitrary permutation of the cyclic elements of f with f itself. Clearly similarity
is an equivalence relation, and the set of all the equivalence classes under it will be
denoted E|[n].

Observe that

e If f belongs to some class E € E|n] and f has k cyclic elements then |E| = k!
and hence the only possible values for the cardinality of an arbitrary equiva-
lence class are 1!,2!,.... (The number of equivalence classes of size k! will be
discussed in Section 6.)

e If f and g belong to the same equivalence class and the weight w is permutation
invariant, then w(f) = w(g).
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Lemma 4. Given a permutation invariant probability weight w on F|n] and an
integer 1 <1 < n, if z is chosen uniforinly at random, then

Pr(A(z) =1 and z is cyclic) = = ZPr(r = k). §
k>| X

Proof: Fix one similarity equivalence class; all the mappings in it have the same
cyclic elements. Let %X be the number of these cyclic elements. The probability

length ¢ < k is exactly 1/k because all the permutations of the cyclic elements are
equally likely (see [Knuth73a, ex. 1.3.3-17]). Summing on all possible sets of k
cyclic elements and on all k > 1 completes the proof; more formally we have

£ . ﬁ'(»\(z) =1 and z is cyclic)
é = Z Z w({f | Mz, f) =+ and x cyclic in )

IEF('I] 1<z<n

Z Z Z E ({f I M(=z,f) =+ and x cyclic in f})

|<k<n|E|_k! IGE 1<z<n

=Y E ---—w {flfeE})-—- > Pr(r=k).

|<k<n]E|—k! |<k_<_n

A somewhat surprising propeity of the permutation invariant mappings follows
directly from the above lemma:

Corollary 5. For any permutation invariant probability weight w on F[n] the
expected number of fixed points is 1.

Proof: From Lemma 4, if z is chosen uniformly at random then
Pr(A(z)=1 and zis cyclic) = ZPr(r =k)= -,
Ty

since every function has at least one cyclic element. On the other hand, if z is
chosen uniformly at random then

Pr(\z)=1and zis cyclic) = 1 E Pr(A(z) =1 and z is cyclic)
" ce{ln)
= -'l;E(number of fixed points).

that z is among them is k/n, and the probability that the cycle containing z has P
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Lemma 6. Given a permutation invariant probability weight w on F[n], for any
fixed point z and any fixed integer 1 <s < n,

Pr(\(z) =i) =) E@.

k>i

Proof: Consider a certain mapping f such that y is the first cyclic point reached
from z. Within the equivalence class of f, all permutations induced by the cyclic
points are equally likely, and therefore the length of the cycle containing y is uni-
formly distributed between 1 and k. The proof is completed by summing over all
the equivalence classes, weighted by their probability, as in the proof of Lemma 4.

Corollary 7. Given a permutation invariant probability weight w on F[n|, for all
>0,

f’;(u=i)=f’;(,\=i)-—z-l-’-£-(—%=—k)=EPr(r=k)(%—%).

k> k>

Proof: By Corollary 3 and Lemma 6, we have
Pr(u(z) = 1) = Pr(A(z) =) — Pr(A(z) = and z is cyclic),

for any fixed z, and therefore also for z chosen uniformly at random, in which case
we can also apply Lemma 4. §

We are now ready to derive the relations between the distribution of the num-
ber of cyclic points, r, and the distribution of A and u.

Theorem 8. Let the probability generating functions for )\, u, and r be L(z),
M(2), and C(z), respectively. Given any permutation invariant probability weight
w on F(n|, these functions satisfy

o= [ L

and ,
mie) = S0 4 g O
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Proof: By definition and Lemma 6 applied to a starting point chosen uniformly at

random,
L(z) = Zﬁ'(l =4)z' = Z &%f—k—) E 2z

k>1 1<i<k

_ Prir=k)z*-1
=z) —
k21

On the other hand

/ C(t)dt ZPr(r- k)t |*

k21

1 x>
which proves the first part of the theorem.
For the second part we use Corollary 7, from which we obtain

ZPr(p—t)z—L(z) E ZPr(r—k) L(z) - Z—Pl(-r’—?——k-)- Z 2

21 21 k2¢ k>1 1<i<k

=k)(z*-1) = L(z) - z_(_C_;(_zl_iTl

( k>l

The probability that 4 = 0 is the same as the probability of choosing a cyclic
element,

= k. Cc(1
Pr(p=0)= E’;Pr(r =k)==—=.
Combining the last two equations we get

M(z) = 9-;(—1)- + L(z) - f(ni(i’—)_—'-;-)}l

In a similar manner, it is possible to obtain expressions for C(z) and L(z) in
terms of M(z), or for M(z) and C(z2) in terms of L(z).
As a quick check, note that by L’Hospital’s rule
_Cls)
1z

lim L(2) = =c(1) =1,

and also

. _1., . Y
'lx_rﬁM(z)-—nC(l)+.lx_1311L(z) nk_imlC(z)—l.

Using Theorem 8 we can easily compute the means of A and u in terms of the
moments of r, but it is more fun to prove their relations directly.
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Theorem 9. Given a permutation invariant probability weight w on F|n|

£(\) = E(’—;i’—l

Proof: Choose a fixed starting point z. Let y be the firrt cyclic point reached
from z. By the argument used in the proof of Lemma 6, the expected length of
the cycle containing y averaged over all the mappings with k cyclic elements is

(k+1)/2. Hence
__f)_-r_l

E(Mz)) =
T

Theorem 10. Given a permutation invariant probability weight w on F|n]
~ ~ 1
B(u) = B - o= (E() + E(Y).

Proof: If the starting point is not cyclic the expected value of A and u are the
same (Corollary 2); therefore to obtain the mean value of u4 we must subtract from
the mean value of A the contribution of the cyclic elements, which have u = 0.
Assuming k cyclic elements, their total contribution is k(k + 1)/2, so that the
contribution per element is k(k + 1)/(2n) and the claim follows. @

To obtain the same relations from Theorem 8, we compute
2qy z C(2) _ 1 /" C(t)
L'(1) = hm(z_1 . o), Tt dt
(z=-1)C(z) - [ C(t)/¢tdt

=i (z—1)?
= lim C(z) + (2 -1)C'(2) - C(2)/=
z—1 (z-—l)

—hm( 20'(a) + 5-C(2 )) 911);‘—0(”

and similarly
M'(1) = L'(1) - ; lim ,(zf i(:) - ((’;(? 1-),1 )
2(z-1)C'(z) - C(2) +1
(2-1)?
1 lm (z-1)C'(2) + 2C'(2) + z(z = 1)C"(2) - C'(2)
s—1 2(z~1)

= I'(1) - 5-(C"(1) +2¢'(1))-

=L'(1) -

=L'(1) -
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We can obtain higher order moments in the saime manner but it is more cou-
venient to use the approach described in the next section.

1.3. Higher order moments

Given a probability distribution G(2) = 3, gx2*, its Ith factorial moment, GO, is

defined by
}: grkL.

Ovur goal in this section is to express the hxgher order factorial moments of A and
p using the higher order factorial moments of r, namely €V = P cxk!, where
cx = Pr(r =k).

The following discussion is simplified if we use the notation

G = --—-G(z)

¢ 1 4

T = 150, =Ta()

By Taylor’s theorem, if all the moments of G exist, then

1] 21
Gw+1)=G(1)+ wGu(l) += c;! C) +oee | (1.3)

= Go + wG + w3Gy +---

From Theorem 8 we have

w+1 w .
L(w+1)-_-'_”_+_1/ ﬂdt=w+l C(t+l)dt
v J; w Jo t+1

_i‘_*‘_l/ (Co+Crt+Cat?+-- ) (1 -t +t2+...)dt

= 2:—1 (co+(c, -—co)t+(cz—Cx+Co)t’+~-)dt
0

(1.4)

= (w+ 1)(Co + ‘21;(01 - Co)w + %(Cz -C +Co)w2 + "’).

Hencefor [ >0

Z( )'-'C,+- Z ( )l-l—tc

0<t<l 0<t<!-

-, X (0

0<i<i-1

+

, (1.5)

1

+|&

l

/
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In particular
L'(1) = -;—(C’(l) +1),

which we already know (Theorem 9}, and
(1) = %(C"(l) +C'(1) - 1).
Some more formula crunching, better left to a computer, leads to

() = L(1) + L'(1) - (L'(1))?
1
‘1'"2"-

= %var(r) + -1},.21'3(r)2 -

For the moments of u, first concentrate on

_ -1

Al ==
We have
Alw+1)= (w+1)(C(w+l) ~1) = w+l(C;+CﬁW+Caw2+"

nw n

hence Ci+C
Al = [ I+1 .

n
On the other hand
c'(1)

M(z) = T + L(z) — A(2),

so that finally

M=L - -C-'!j-n—c‘ﬂ, {>0.
In particular " ,

2n

and
c"(1) +3C"(1)

M"(1) = 2"(1) - ==L

(1.6)

(1.7)

(1.8)

(1.9)

')’ (1.10)

(1.11)

(1.12)

(1.13)

(1.14)
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1.4. The distribution of the number of cycles

Another interesting characteristic of a mapping is the number of components, or
equivalently, the number of cycles. This random variable (over F[n]) is denoted S,
and its probability generating function is denoted B(z). We shall see below that
the distribution of g is closely related to the distribution of r.

Theorem 11. Given a permutation invariant probability weight w on F|[n], the
probability distribution of the number of components satisfies

Pr(g=1) = ¥ [{| 4 Prtr = .

k
Proof: Fix k cyclic elements. All their permutations are equally likely, hence the

probability of their forming j cycles is exactly ["] /k!, where [k] is a signless Stirling
number of the first kind! (See, for example, [Knuth73a, §1.2.10..) @

Corollary 12. Given a permutation invariant probability weight w on F[n), the
probability of a function being connected is

Pr(ﬂ=1)=zp—r(l—=k—)-=/olc—£zldz.

k

From Theorem 11, the probability generating function of g satisfies

B(z) = Zekz:[] E ZH (1.15)

On the other hand the exponential generating function for Stirling numbers of the

first kind is v
lla=i(er)

and therefore, using the Hadamard product,

Z L] i -.;,; %C(t) (ln ;—_t_—l)J dt, (1.16)

! With this notation: k!(§) = PN\l HER

3
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where the integral is on a circle around the origin.

Cormbining equations (15) and (16), we obtain

B(z) = '27“?( ( ‘l)j dt

= -1_, %C(t) (t--_‘—i)‘r dt (1.17)

2

To compute the moments of # we differentiate equation (17) with respect to
2, at z = 1. We obtain .

l
1 1 ¢ t
1B = — ¢ = —_) =
!By 2m’ftc(t)(lnt—1) t_ldt'

Now we use the expansion

1/ 1\ 1\ k+r] z*
ﬁ(l—z) (ml—-z) '?[H—J,E’

where ',‘Ir'],_ is an r-Stirling numbers of the first kind.? (see [Broder84al). Setting

z=1/tand r =1 we get
1
t t \ RIk+1} i
t—l(lnt—lj _;k![l+l]lt ‘

Forl >0, [',‘Ill 2 ['{I;], and we cobtain

ek lk+1
B = Zk, [z+1] I>o0. (1.18)

For the first moments it might be preferable to use the identities ([Zave76])
1 1 X
l—zlnl—z —ZI‘:H“ ’

2 The r-Stirling numbers of the first kind, [:‘]'. count the number of permutations of k
elements, with ! cycles, such that the elements 1,2,...,r are in distinct cycles. The r-Stirlinp

numbers of the second kind are discussed in section 2.1.1.




e e e m e b Beedm e T e £ T e e 2 ok e e, T e el o 3. .

Chapter 1: Permutation snvariant meppings

aad

! (in ! )2—‘7‘(H’—H“’)z*
= S(HE - HP) A,
k

1-2 1-2

where HS) are (generalized) Harmonic nuzubers, Hy = Yici<id™! and H,(::) =
Ligienl ™
From these identities

E(B) =) exHa, (1.19)
k

and
E(3(5 - 1) = X ea(ar? - £7). (120
k

V/e have seen so far that the distributions of several important random vari-
ables associated with a permutation invariant probability distribution on F[n], are
determined by the distribution of r, the number of cyclic elements. The next two
sections show how this distribution can be replaced by the distribution of a simpler
entity.

1.5. The Foata-Fuchs encoding of mappings

Let L = {T, 2,00, ﬁ} be an alphabet. Using the terminology of Comtet [Comtet74],
to each word w over ¥ we associate its Abelian image, T (w) obtained by replacing
each occurrence of the letter i in w by the commutative variable z;. For instance
T (123 2) = z,232;5. The enumerator of a multiset of words {1 C £* is defined to

be the polynomial
PO) =) T(w).
weN

Clearly the coefficient of zi'z32...z% in P(0) represents the number of words in
01 that contain exactly 1} occurrences of 1, 1, occurrences of 2, and so on.

Sometimes only some letters are of interest; in this case the variables corre-
sponding to other letters are assigned the value 1, to obtain the enumerator by
the number of occurrences of the distinguished letters. This is the sam= as the
enumerator of the multiset obtained from 0 by deleting from each word the undis-
tinguished letters. For instance the enumerator of £" is (21 + 23+ +-+z,)"; the
enumerator of L™ by the number of occurrences of 1 and 3 is (z1 +zs+n-2)",

An encoding is a 1-1 correspondence between the n™ distinct mappings from
{1,2,...,n} into {1,2,...,n} and the n" distinct words of length n over the al-
phabet L = {1,2, . .,ﬁ}. Let f be a mapping. The trivial encoding of f is given

by
fe f(1) £(2)...f(n);
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that is, the word associated to f is obtained by concatenating the letters cor-
rcsponding to the values taken by f in 1,2,...,n. The trivial encoding of the
mapping in Figure 2 is

4315156316139410716957.

The trivial encoding of a mapping f is denoted Co(f).

14 12

Figure 1.2. A mapping on 16 elements.

As described below, the Foata-Fuchs encoding (FF-encoding) [FF70] of & map-
ping f is the concatenation of | + 1 words, wg,w;,...,w; where [ is the number
of leaves (nodes with indegree 0) in the graph of f. The word wo describes the
permutation induced by the cyclic elements and is generated by the following al-
gorithm. (After each step, the result of this algorithm, applied to the mapping in
Figure 2, is shown in square brackets.)

Algorithm A.

1. Write the permutation as a product of cycles.
((3,15,5,6)(9)(7,16)]

2. Reverse each cycle.
[(6,5,15,3)(9)(16,7)}

3. Rotate each cycle such that the maximum element in each cycle is in the first
position. The element in the first position of a cycle is called the cycle leader.
[(15,3,6,5)(9)(16,7)]

4. Put the cycles in increasing order of their cycle leader.
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[(9)(15,3,6,5)(16,7)]

5. Remove parentheses and replace each number by its correspon_dix:x_g__le_tt_er_.“ _
[9 15365 16 7]
0

The result is actually another permutation of the letters of Co(f). It is clear
that the transformation is 1-1 because the algorithm can be reversed. The end
of a cycle is “signalled” by a new left-to-right maximum. This transformation is
implied in [Riordan$8, Chap. 8] and formalized and generalized in [Foata6s]. It
was later referred to as “the first fundamental transformation for permutations”
[Foata83).

Now let a;,4a3,...,a;, 81 < a3 < -+« < a; be the leaves in the graph of f. The
word w; consists of the labels of the nodes on the path from a; to the first node
already appearing in wo,...,w;-1, including this node and excluding a,, in reverse
order. For the mapping in Figure 2 we havel =6,a; = 1,83 =2,a3 =8, a( = 11,
as = 12, ag = 14, and w, =ﬁ?,w,=§,w3=i§ﬁ,w4=3ﬁ,ws =7,w3=5.
Therefore the complete encoding of the function in Figure 2 is

e - W — e — - o— —— _ o— oan -

It is clear from its definition that the FF-encoding is a permutation of the
trivial encoding. It is a 1-1 correspondence because it can be reversed. Given a
word w of length n, the letters corresponding to a;,a3,...,a; are exactly those
letters among 1,...,7% that do not appear in w, sorted in increasing order. The
subword wo ends before the first repeated letter, or wo = w if no letter is repeated;
the beginning of each subword describing a path is “signalled” by a repeated letter;
and so on. Exactly / letters are repeated since [ letters are left out.

Given a mapping f its FF-encoding will be denoted C;(f). A set of mappings
F encodes into a set of words, denoted C,(F).

Examples

1. Let F be the family of functions f : {1,...,n} — {1,...,n} such that the
graph of f is connected and n is cyclic. Then

P(Ci(F)) = za(zy + 22+ -+ + z2)" 1,

because any f € F has exactly one cycle, and n must be in it. Therefore ¢ 1(f)
starts with 7t followed by an arbitrary word of length n — 1.

17 ;
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2. Let F be the family of functions f: {1,...,n} — {1,...,n} such that n is the
unique cyclic element. (The graph of every f is a tree rooted at n.) Then

P(C{F)) = znZn(zi + 22 + -+ za)" 2.

Making
=23 = =24 =1,

we find that the number of undirected trees on n labelled vertices is n"~3.

(Cayley's theorem)
1.6. The distribution of the repetition index

The repetition index v of a mapping f is the maximum number ¢ such that the
values f(1), f(2),...,f(5) are all distinct. For example, the mapping in Figure 2
has v = 3. Our interest in the repetition index is motivated by the next theorem.

Theorem 13. For any permutation invariant probability weight w on F|n|, the
probability distributions of the total number of cyclic elements and of the repetition
index are equal, that is for any k

Pr(r =k) =Pr(v=k).

Proof: Let f be a mapping with r(f) = k. If we look at the FF-encoding of f
as the trivial encoding of another mapping g (i.e. Co(g) = Ci(f)), then g has
the property that w(g) = w(f) because w is permutation invariant. Furthermore
v(g) = k by construction. Summing over all f with 7(f) = k completes the proof.

Theorem 13 is the basic tool for the computation of all the probability distri-
butions implied by a certain permutation invariant weight because in most cases it
is easy to determine the distribution of v, using simple string counting arguments.

Using the FF-encoding we can count the number of similarity equivalence
classes introduced in Section 2.

Theorem 14. The number of similarity equivalence classes of size k! is

n n-k-1
(k)" ’
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and the total number of equivalence classes is

[E[n]l = (n + 1)""1.

Proof: Consider two mappings, f and g, belonging to the same equivalence class,
E. Assume that |E| = k!. (Hence f and g have k cyclic elements.) Under this
assumption, if C;(f) = a102...8, and Cy(g) = b;63...5,, we must have a; = b
for all j greater than k; a1az...ax must be all distinct and must be a permutation
of 15, ...bk; and ex4) must be equal to one of the letters ay,a3,...,ax. It follows
that any equivalence class with k! elements can be represented by a set of k distinct
letters and a string of n — k arbitrary letters, such that the first letter of the string
is in the set. Therefore the number of equivalence classes of size k! is (:)kn""""‘.
The total number of equivalence classes is

Z (:) knn-—k—l’

k>1

which equals (n + 1)*~! because of the identity

Z (:) kzk—lyn-k = n(z+ y)u-l

k>1

-

which is obtained by taking the derivative of (z + y)™ with respect to z. @

1.7. The distribution of »

In certain cases we are interested in the distribution of p(z, f) = A(z, f) + u(z, f),
that is, the sum of the length of the tail and the length of the period starting from
z in the mapping f. Another interpretation for p(z, f) is to see it as the number of
elements reachable from z, or the number of “descendants” of z, in the graph of f.
By analogy with A and u, the random variable p(z) represents the value of p(z, f)
when z is fixed and f is chosen in F[n} according to the probability weight w, and
the random variable p represents the value of p(z) when z is chosen uniformly at
random in {1,...,n}.

We know the expected values of A and of u, hence the expected value of p is not
hard to find. But its higher order moments present more difficulties. Fortunately,
we can relate the distribution of p directly to the distribution of the total number
of cyclic elements, r, with the help of yet annther encoding of mappings.

1‘?!0
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Let f € Fin] be a mapping, and let z be some fixed element in {1,...,n}.
The encoding Cz(z, f) is a string of length n + 1 over the alphabet {_l_, 2,... ,'ﬁ} of ;
the form ' P \ ‘

z f(z) f3(z) ... f*(z) fla1) ... f(an-i), to] -

where f*(z) is the first repeated element in the sequence z, f(z), f3(z), ..., possibly ]
z itself, and a;,...,8n—; are the elements in {1,...,n} that do not belong to this I B
sequence, written in increasing order. The index 1 is in fact p(z, f). For example, i
for the function in Figure 2 we have

i
C2(1,/)=TiT5563 153161354 1071697, | ; ;
C2(5,/)=5631554315161394107169 7,
C2(9,/)=9943151563161341071695 7. : , =
Lemma 15. Given a permutation invariant probability weight w on F|n), if i S ’

Ca(z,f) = Z Colo) B IR

then , T Ph
Pr(f) = Pr(g). e
R IR
Proof: Clearly, C3(z, f) consists of Z followed by a permutation of the trivial en- e
coding of f. The premise of the Lemma means that the trivial enceding of g is a .

permutation of the trivial encoding of f; hence f and g have the same probability
because w is permutation invariant. §

Theorem 16. Given a permutation invariant probability weight w on F[n],

l"\l'(l’=k)== (I—L;—I)Pr(r=k—l)+%Pr(rzk).

Proof: We have
Pr(p=4k) = f’\r(p(z) =k and z is not cyclic) + ﬁ'(p(z) =k and z is cyclic).

The latter term is just ﬁ'(k(z) =k and z is cyclic), which equals Pr(r > k)/n
by Lemma 4. The former term is 1/n times the total weight ¢f all mappings whose
Caz-encoding has the form 2Co(g), where g is a mapping such that v(g9) = k-1
and z is in {1,...,n}, but it is not one of the distinct elements g(1),...,9(k — 1).
Hence we have

o~ n“"k'*‘l
Pr(p=k) =21

Pr(v=k=1)+ ~ Pr(r 2 %),

and the theorem follows because the distributions of v and r are identical (Theorem
13). 8
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As a quick check we can compute

ZPrp—k) Z(l—-————)Pr(r—k—l)+ ZP:(»&)
=Z(1—§)Pr(r=k)+;E(r)=1
k

and

-k (15 prtr ek L=

2k
= Z(H 1) (1 - -) Pr(r=k)+ - ZPr(r =i) Y k
1<k<s
r(r 73
=E(r+1(1-1)) += E(—(lel) =E(r)+1—§—(')—;"—f—(—l,
which is indeed E(A) + E(u).
The probability generating function for p, R(z), is given by
R(z)=2( k- )ck 124 = Z "Zc.
k 2k
= E (1 - —) exz*t 4~ Zc. PO (1.21)
i 1<k
_ 22C'(z)  z(C(2)-1)
= 2C(z) - + nz=1) "

For the higher order factorial moments of p first note that
2
R(z) = 2C(z) - =C'(2) + A(2),

where A(z) is given by equation (9), so that it is enough to consider the derivatives
of e

D(2) = 2C(z2) — ;—C'(z).
We obtain that

(w+1)

Dw+1)=(w+1)C(w+1) - C'(w+1)

(w+1)?
——(

=(w+1)(co+C,w+cgw +eee) = C1+2Cw +--+);
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hence | +1)Cray +2Ci + (1 = 1)C
Dl=Cl+Cl_x—( +l) ‘+l+2nl+( —1) l—l.
From equat.on 11
A= Ci+Cipr
| = -,
n
so that -1 9 ) '
—— m ——

R = (1 - T) Ci-1+ (1 - - ) C - ;Cl+l- (1.22)

In particular
1y — _ _1_ "y _1_ "
R'(1)=1+ (1 n) c'(1) ZnC (1), (1.23)

as expected (equations (6) and (13)), and

Ry =(2- Y ew+ (1-2) ey - e, (1.24)

n n 3n ) )

1.8. The covariance of A and u

By definition, the covariance of A and u is given by
v (M u) = EQw) - E() E(n),

and their correlation is
D) = o MH)__
var(A) var(u)

It seems that A and 4 must be negatively correlated for permutation invariant
weights; if we pick a certain z and a certain f, and if turns out that u(z,f) is
larger than average, we expect that A(z, f) will be smaller than average because
for each value of p, if w is permutation invariant, then A and u are almost identi-
cally distributed. However there are permutation invariant weights such that the
correlation of A and u is positive; an example is presented in Appendix B.

Our goal in this section is to find the value of €ov(\, i) as a function of the
moments of r.

We start from
var(p) = B(p? — £(p)?) = B(A? + 4 + 20n) - E()? - E(u)? - 2E(V) E(n)
= var(}) + var(u) + 280v(A, ).
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Replacing the variance by its expression in terms of derivatives of the probability
generating function, we obtain

R'(1)+R'(1) - R'(1)2=L"(1) + L'(1) - L'(1)?
+M"(1) + M'(1) - M'(1)? + 2&0v(\, ).

But R'(1) = L'(1) + M'(1), and hence
R"(1) — 2L'(1)M'(1) = L"(1) + M"(1) + 2&v(\, u),

and finally

[ SRR

€v(A,p4) = 5 (R"(1) - L"(1) - M"(1) - 2L'(1) M"(1)). (1.25)

After expressing all the factorial moments in terms of the factorial moments
of the total number of cyclic elements, r, (equations (5), (12), and (22)), we obtain
(with the help of a computer) that

C‘(')V(z\,l") = '112‘ + (-;— - %) C'(l) + (% _ 4_3'_1_> cl.l(l) _ %Clﬂ(l)
1 1 1 (1.26)
-(5- %) cwr+ Lewe.

1.9. A simple example — permutations

In this section, as a quick check, we shall examine a very simple permutation in-
variant weight. More intricate problems will be discussed in the following chapters.

Assume that all permutations are equally likely and all other mappings have
_probability 0. More precisely, the probability weight is defined by

_ [ 1/n!, if fis a permutation;
w(f) = {0, otherwise.

This weight is clearly permutation invariant.

All the elements are always cyclic, hence

C(z)=2z" E(r)=n E(r})=n? var(r)=0.
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From Theorems 9 and 10, we obtain that

-~ n+1
and n+1 1
~ - 3 2 -
E(u) = 3 2n(n+n )=0,

as expected. Equation (8) results in

n3-1
12 °

var(\) =

and equation (26) confirms that €ov(A, u) = 0. Theorem 8 gives

: /'t"_ldt= z -1
-1Jo z—-1 n

4
=%,‘sz’

21

L(2) =

and (not too surprisingly)

z(z"-1) 2z(z"-1) _

n(z-1) n(z-1) 1.

M(z)=1+

For the number of cycles, # we obtain, from equation (15), that the probability
generating function is
1 n| ;
B =53 [j]z:.

Equations (19) and (20) translate into
E(B8) = H,

and
var(f) = H:-H® + H, - H} = H, - H?,
a slightly less known fact.

Corollary 5 is the somewhat amazing truth, that no matter how many men
will mix up their hats, on average only one of them will get his hat back.

3 It is not my intention to be sexist, but women never mix their hats.
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1.10. Other types of invariance

A weight function w, was called permutation invariant, if for any permutation p
and any mapping f, we have w(f) = w(po f). In a similar manner we say that a
weight function w is labelling invariant if for any permutation p and any mapping
[, we have w(f) = w(fop).

Any mapping f induces an equivalence relation over its domain, defined by
z =y iff f(z) = f(y). A weight function is labelling invariant if any two mappings
that induce the same equivalence relation are equally likely.

A weight function w is isomorphic invariant if for any permutation p and any
mapping f, we have w(f) = w(p~! o f o p). In other words, a weight function is
isomorphic invariant if any two mappings that have the same (unlabelled) graph
are equally likely.

Theorem 17. Any weight function, w, is equivalent to a isomorphic invzriant
weight function, w', in the sense that w and w' imply the same distribution for u,
A, p,andr.

Proof: Define 1
w' = Ezw(p“‘ o fop),

_ P
where p ranges over all permutations of {1,...,n}. @

This theorem simplifies the study of the possible probability generating fune-
tions for u, A, p, and r. For instance, on F[3], the most general probability gen-
erating functions for these quantities depend only on 9 parameters (which must
sum to 1), corresponding to the probabilities of the 9 isomorphic mappings on 3
elements, and not on 27 parameters corresponding to the 27 mappings in F|[3].
Such a study shows that the propositions 6, 7, and 16 are independent in the sense
that for any subset of them there are (non-invariant) weight functions that satisfy
all the propositions in the chosen subset, and do not satisfy the other propositions.

The three types of invariance defined so far (permutation invariant, labelling
invariant, and isomorphic invariant) are clearly independent, because there are
weight functions that have one property, but do not have the other two. However
if any two of the invariance properties are present, all three hold. For instance,
permutation invariance and labelling invariance imply isomorphic invariance:

w(f)=w(p™' o f) =w(p~ o fop),

and permutation invariance and isomorphic invariance imply labelling invariance:

w(f) =w(pof)=w(p~topofop)=w(fop).
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We say that a weight function is strongly snvariant if it is both labelling in-
variant and permutation invariant. By Theorem 17 and the above observation,
any permutation invariant weight function is equivalent (from the point of view of
the distribution of u, A, p, and r) to a strongly invariant weight function. Simi-
larly, any labelling invariant weight is equivalent to strongly invariant weight, and
therefore all the relations between the distributions of u, A, p, and r, that hold for
permutation invariant weights also hold for labelling invariant weights.

Let A(f) be the multiset {d(1),d(2),...,d(n)}, where d(s) is the number of
elements in {1,...,n} where f takes the value i (that is, the indegree of ¢ in the
graph of f). With this definition, a weight function w is strongly invariant if for
any two mappings f and g that satisfy A(f) = A(g) we have w(f) = w(g).

Clearly for any mapping f, we must have ), .;<, d(¢) = n, so that A(f) is just
a partition of n. Therefore a strongly invariant weight is completely characterized
by associating to each partition of n a certain probability. For instance if n = 3
there are three partitions: [1,1,1], [2,1], and [3]. Denoting their probabilities by
w(1,1,1], w[2,1], and w(3], it follows that for any strongly invariant weight on F|[3],
the generating function C(z) must have the form

C(z) = (w[3] + %w[Z, 1))z + ;-w[z, 1)z + w1,1,1]23,




Chapter 2
The uniform distribution model

The obvious permutation invariant weight on the space of finite functions, Fin), is
the uniform distribution. A considerable number of results are known about this
situation; Appendix A contains a bibliography on random mappings that lists over
twenty relevant papers. The main results were obtained by Harris [Harris60] and
Stepanov [Stepanov69).

In this chapter we shall use the concepts of the first chapter, both to derive
some old results in the new setting, and to obtain some new formulz. The last
two sections do not make use of the permutation invariant property of the uniform
distribution, but share with the first chapter the use of combinatorics on words as
a main tool.

2.1. Preliminaries
The section presents some mathematical entities that will be used later.
2.1.1. The r-Stirling numbers

Stirling numbers of the second kind are denoted by { ,’:.}, they are defined combina-
torially as the number of partitions of the set {1,...,n} into m non-empty disjoint
unlabelled sets. Good expositions of their properties can be found, for example, in
[Comtet74], [Riordan58], or [Jordan47].
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The r-Stirling numbers of the second kind, {;}', count certain restricted
partitions and are defined, for all integers r > 0, as the number of partitions of the
set {1,...,n} into m non-empty disjoint subsets, such that the numbers 1,2,...,r
are in disiinct subsets.

The properties of the r-Stirling numbers are discussed in [Broder84a]. They
were also studied under different names and notations in [Nielsen23], [Carlit280],
and (Koutras82]. Their asymptotics were studied in detail in [IM65]. Here we shall
need only the fact that

{n :m} T (%" o) (2.1)

as n — oo, for fixed m and r. (The notation z!! means z(z — 2)(z - 4)....)

The r-Stirling numbers satisfy a recurrence similar to the recurrence for Stir-
ling numbers, namely

n .
=0 <
{m}, , n<r,

{ n} = 5m,n n=r, (2-2)
’

2.1.2. The Q-series

Knuth defines the infinite Q-series in [Knuth85) as

nk

Qn(01,82,...) = ) k. (2.3)
k>1

For any given sequence a;, a2, ..., this function depends only on n. In partic-

ular, Qa(1,1,1,...) is denoted Q(n). The asymptotic behavior of Q(n) is well

understood ([Ramanujan12], [Knuth73a, §1.2.11.3)):

Q(n):w/%'}-—§+%\/—21:+~u. (2.4)

The Q-series are relevant to many problems in the analysis of algorithms
[Knuth85}, for instance the representation of equivalence relations [KS78], hashing

P £ ey
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[Knuth73b, §6.4], interleaved memory [KR75), labelled tree enumeration [Moon71],
optimal caching [Knuth85j, permutations in situ [Stanford81], and random map-
pings [Knuth81, §3.1].

It can readily be shown that the Q-series satisfy the recurrence

Qnl(a1,2a2,3a3,...) = nQ,(ay,a; — a;,a3 — as,...). (2.5)

From this recurrence it follows that

Qn(1,2,3,...) =n;
Q@a(1%,2%,32,.. ) =nQ(n); (2.6)
Qn(1%,2%,3%,..) =2n% - nQ(n).

In general there exist integral and positive coefficients gm,k such that

Qn(lma2m’ 3m’. . -) = qm,OQLml - QM.XQLm—X] + QM,2Q£:"‘2] Y (2-7)

where
Qlml — {n(""“}/’, if m is odd;
" n™/2Q(n), if mis even
The leading coefficient has a simple expression, gm0 = (m - 1)!! (see [Knuth85] for
details). Consequently for s fixed,

k
Q.(1%,2%,..)=Y :—kk" = (25 — 1)!1n*Q(n) + O(n*), (2.8)
k>1
and
k
Q”(120+1’220+1,.“) = Z %kh-ﬁl - (23)!!71”" + O(n’+l/2). (2.9)
k>1

There is an interesting relation between Q-series and r-Stirling numbers: For
all A > 1 we have

Qn ({'1‘}2{"; 1}) - gk{h +: - ‘}' - n"s-f—, (2.10)

and in particular for r = 0 (i.e., regular Stirling numbers) we have

Qn ({:’}2{";1}) =nh. (2.11)

29
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Both this equations are an immediate consequence of the recurrences (2) and (5).
Another noteworthy particularization of equation (5) is

nk nk nt
Z r—;—kak = n(Z ;;(ak - ag-1) + ;a;). (2.12)

k>3 k>s

2.1.3. Asymptotics of certain Q-series

In this section we present a fairly general method for obtaining the leading term
in the asymptotic expansion of Q-series of the form Z» f(k)nk/n* where f is a
differentiable function on the interval {1,00), and where f (z) = O(z®) for some
constant a and all z € [1,00). Clearly

f(2) = / ors

so this condition implies that

j 3 O(z2+!), if a> -1;
‘ f(z) = ¢ O(lnz), ifa=-1; (2.13)
0(1), ifa< -1,

We start by noticing that

4 x '
: AR _r -i/n _ ,—k(k—1)/(2n)
- II (1 ) II e , (2.14)

1<i<k 1<i<k

and hence f(k)n%/n* is exponentially small for k > n!/3+¢ for any € > 0.

For k < n}/3+¢ we can use the Stirling expansion o obtain

ln-(;z—_—'%!—;t—,;= (n+-§-)lnn—n—(n—k+-})ln(‘n—k)
+(n—k)-klnn+0(n"?) (2.15)
= (n-—k+%)ln;—i—;—k+0(n“').

Expanding the logarithm in its Taylor series we get

n2k=ln(l+nfk)=nfk—2(n,fk),+0(-(-;l—§%5), (2.16)

In
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{

which combined with equation (15) leads, when k < nl/2+¢ o

n! k k3 k3 k? !
- _ - -1/2343¢ .
In (n—k)nk  2(n-k) 2(n-k) +O(("“k)2) 2n + Ol )
(2.17)
Therefore x
L= eKIAN (11 o(nm 1) g g plabe, (2.18)

n

These results help us to prove the following

Lemma 1. Let f be a differentiable function on [1,00) such that ['(z) = O(z°)
on [1,00). Then

2 :—ff(k) =2 e /BN (k) (14 O(n=12+)),

k>1 k>1
for any € > 0. (The constant implied by O does not depend on ¢.)

Proof: This follows from equation (18) with a proper choice of ¢, and the fact the
the sum of the terms corresponding to k > n!/3+¢/3 g exponentially small. g

The next step in our approximation is to convert the sum to an integral using
Euler’s summation formula. To evaluate the error term, we shall need the following

Lemma 2. Asn — oo,

- nB+U/IL((3 +1)/2) /2 + O(n=B+1/2), ifg > —1;
/ e~ /ngf iz = (Inn)/2 - 4/2 + O(In(n)/n), iff=-1;
1 o(1), : ifg < -1.

Proof: For § > —1 by making the substitution y «— z2/n we ootain

2
/ % s ngs gp - POV / " evye-ns g,
1 1

2 /n
(8+1)/2 i/n
= ?-T—r((ﬂ +1)/2) - / e ¥yB-1/2 gy,
1]

but

n-(8+1)/2

[CES A

1/n 1/n
o o

;é
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which proves the first case of the lemma.

For the case § = —1, we use the same substitution, y « z?/n, and integration
by parts, to get
co 0 -y —yl oo o0
/ e /mzldr = l/ c—dy =1y + -1-/ e Vinydy
1 2/yn ¥ 2 1/n 2 1/n
e~V/"lnn 1 [® 1 [Yn
= — e Vinyd -—/ e Vinydy.
2 2 /; yay 2/, yay

But it is known that o
/ e Vinydy = -1,
0

where « is Euler’s constant (0.5772...), and

1/n 1/n
/ e Vinydy| < / Inydy =lnn+1___o(lnn).
0 0 n n
Hence - —1/n
/ e /ng-1gr =210 lnn _ 7 + 0 (M)
1 2 2 n
_bn_v (l_n_z)
2 n
Finally, if 8 < -1, thea
L) co -1/n
/ e"’/"zﬁszG"’/"/ Pdr=-1 =0(1)
1 1 Bg+1

We can now prove the main result of this section.

Theorem 3. Let f be a differentiable function on [1,00) such that f'(z) = O(z®)
on [1,00). Then, for any positive €, as n — oo,

z: gf(k) = (/loo e""/(z")f(z) dz) (1+ O(n‘l/““)) + O(g(n)),
k>t _
where

Inn, ifa=-1;

n(@+)/3 ifa> -1;
g(n) = {
1, ifa< 1.
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Proof: By Euler’s summation formula, if & is differentiable, then

3 h(k) = /lw.h(z) dz - 3h(z)

k>1

l +/l (z - |z) - 1/2)¥(z) dz

T+o (/;oo{h'(zﬂ dz).

If we set h(z) — e~*"/(37) f(z) then as n — oo,

* 1
=/l h(z)dz — Eh(z)

=0(1),

3 | 2h(2)

o0
1
and

W(z) = (-21(2) + f'(2)) ==/ 3,

Hence

~k2/(2n) - ® ~-z%/(2n) 1 =
Y e f(k) /l e f(ac)da:+o(n/1

1<k
+0 (/lw |e-=’/(’")f'(z)] dz) +0(1).

e“’/(z"?zf(z)l dz)

We need now to evaluate on a case by case basis the integrals

1 *® -z3/(2n)
A = ; e sz(z)l dI,
1

— oo —23/(2n) | 41
B /l e 17'(2)] dz.

If a > -1 then zf(z) = O(z®*2?), and by the first case of Lemma 2 we have
A= O(n(°+3)/’)/n = O(n(°+‘)/3) and B = O(n(‘"“)/’).

If a = ~1, thea zf(z) = O(zInz) and

1 [% —22/n)
A=0 o e zlnzdz);
1

Integrating by parts and using the second case of Lemma 2, we obtain

o ® 2
/ e =/ zlnzdz = "/ e=/Mz=1dz = O(nInn),
1 1

3:
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so that A = O(Inn). Also, directly from the second case of Lemma 2, B = O(lnn).

If @ < —1 then z{(z) = O(z) and by the first case of Lemma 2, A = O(n)/n =
O(1). By the third case, B = O(1).

We conclyde that

c S e Ran ) = /,w ==/ f(z) dz + O(g(n),

k>1

where g{n) has the desired form, and the theorem is proved by applying Lemma 1
to the last equation. '

As an example we can compute, for s > 0, the Q-series ), 5, k‘nﬁ/n". In
this case a = s — 1 and we obtain using the first case of Lemma 2

nk ® 3
E —k? = (/ e~z /(3n) g0 dz) (1+ O(n"'/“')) +0(n*/?)
1

(2n)(¢+l)/2

T ((s +1)/2) + O(n*/?*°).

In particular if s is an odd integer, the result is
2(--—1)/2"(3+l)/2((\g - 1)/2)! + O(nn/2+¢) = (3 - 1)!!n“+‘)/’ + O(n'/2+¢),
and if s is an even integer, the result is

(2".) (s+1)/2 s—1s8-3 lr(l) O(nl/2+c)

2 2 2 2 \2
=(s- 1)!!n('+1)/2\/—§+ O(n‘/?""),

in agreement with equations (8) and (9).
2.1.4. Abelian identities

Sums of the type

Ap(z,¥;0,9) = Z (:) (z + k)*+P(y + n — k)nkta, p, q,n integers,
k

are called “Abelian binomial sums” by Riordan [Riordan68], [Riordan69].
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With this notation, the famous Abel identity [Abel1826] becomes

An(z,y:-1,0) = Lz—j—y;tﬂ-— (2.19)
This is sometimes written as an identity in three variables
n
Z (:) (z+k2)*Y(y+ (n - k)z)"'k e _(_:l:_i—_y_;-i-_n_z_)_, (2.20)

k

via the substitutions z « z/z, and y ~ y/z. Equation (19) can also be written as

n" + E (:) z(z+ k) 2 n-k)"* = (z+n)",

k21

which, after taking derivatives with respect to = and setting z « 0, becomes

> (:) k*=Y(n — k)** = ", (2.21)

k>0

Another well known example of an identity involving Abelian sums is the
Cauchy formula [Cauchy1826]

An(z,y;0,0) = E (:) (z+k)"(y+n—lc)""‘ = E

. 4 (n) K (z+y+n)""k, (2.22)

k

which for z = y = 0 results in

ny Lk -k _ I -k _
zk: (k)k (n—k)"—* = ; (k)kw =n" QM) +1).  (2.23)
Riordan found a recurrence and a symmetry formula for A, and used them to
prove these identities and also to derive similar “Abelian identities” iteratively for
p and g between —3 and 3. Another proof method, due to Frangon [Frangon74), is
based on the FF-encoding applied to a suitably chosen family of mappings. In this

- manner Frangon proved the Abel identity and the Cauchy formula by counting

arguments. The author obtained a general explicit expression for the Abelian
identities ([Broder83]), for all p,q > 0, using similar word counting arguments. For
z = y = 0 the general identity is

> (:) K¥P(n = k)rhe = et 3 % {k : p} {l T q}(k +1).  (2.24)

k k,120

29
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In particular

Z (:) kAP (n - k)nk = nng ;":;{k :p}, (2.25)

k

since

; (:)kk+p(n _k)n—k
=nn1 3 nk+‘{k+p}(k+l) n_lz nt > {H—p}

k,1>0 1" o<i<k

0+p nk(k+p nk(k+p
(g ) R )

0 kZln k kzon k

(The penultimate step is based on equation (5).)
Another Abelian type identity that we shall need is
k4 -k _ n<(k+ D .
zk: (k)k ok (n K"k =n E { }' i>0. (2.26)

(This and similar identities are proved in [Broder84b).)
2.2. The distribution of the number of cyclic elements

We have seen that the probability distribution of many of the random variables of
interest is closely related to the distribution of the number of cyclic elements, r;
hence, we start by computing this distribution.

Lemma 4. Given a uniform probability distribution F[n],

knk
Pr(r = k) = n_k:—l.'

Proof: Recall that the repetition index v of a mapping f is the maximum number ¢
such that f(1), f(2),..., f(s) are distinct. Clearly, if all functions are equally likely,

then
(n—-k+ l)k
nk+1

Pr(v=k)= nn=1)..
and by Theorem 1.13 this is the same as the probability that r = k. |}

We immediately obtain
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Theorem 5. Given a uniform probability distribution F|n], the probability gen-
erating function of the number of cyclic elements is

1 nk
C(z) =~ E —kz*.
nsin

Note that (equation (6)) we indeed have

EPr(r =k) = _Q_,._(_l_,_';2,__)_ =1 (2.27)
k

The generating function C(z) has a nice form as a Q-series:

1 1
C(z) = ;Qn(z»222y323|'--) = ;;Q,,(Z,zz - 2,23 - 22,...)

(2.28)
=(z-1)Qn(1,2,2%,...) +1.

The factorial moments of 7 can be expressed in terms of the Q-series as

1 nk 1 l e nk ‘
0¥ =23 Sht= 13 [y 2w
k>1 s k21 (2.29)

= - : [:.](-1)'*"Q,.(1,2"+‘,3‘+‘,...).

The same identity can be derived as follows. Recall that
Clw+1)=Co+wCy +w3Cy+---,
where C; = C(D/I!. From equation (28) we have

Clw+1)=w@Qa(l,w+1,(w+1)%..) +1,

TN (EATANTANN
e (())0)-)

and therefore

(2.30)

3
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from which equation (29) follows immediately.

For fixed [, using the asymptotics of the Q-series (equations (7), (8), and (9)),

we obtain
cn=1 D [’] (-1)-1n QU1 + o(n=13)
neu (2.31)
- %’qﬁﬂ%x +0(n"V3)).
In particular
¢'(1) = Q(n),
C"(1) = 2n - 2Q(n), (2.32)
C"'(1) = 3nQ(n) — 9n + 6Q(n).
From here
E(r) = C'(1) = Q(n), (2.33)
and

var(r) = C"(1) + C'(1) - (€'(1))* = 2n - Q(n) — Q(n)?
- 27)n ™ 2.34
- 5 ow. o

2.3. The distribution of X and

Theorem 8. Given a uniform probability distribution on F|[n], the length of the
period and the length of ihe tail from a starting point chosen uniformly at random

satisf)
y -~ . 1 nk .
Pr(k=z)=;z;—k—, 1<t<n;
k>s
k
Pr(u:z):%zg—i, 0<t<n
k>3

Proof: The first relation follows immediately from Lemma 4 and Lemma 1.6; for
the second we use Corollary 1.7 and equation (12) to obtain

the case s+ = 0 follows from Theorem 1.8. |1
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Corollary 7. Given a uniform probability distribution on F(n|, the probability
generating functions for length of the period and the length of the tail from a
starting point chosen uniformly at random satisfy

L(2) = zM(2).

The factorial moments of A were computed via equation (1.5), using a com-
puterized formal manipulation system (MAPLE). The first few are listed below.
1
v =20t

L = 2= 03(") -1 (2.35)

L"(1) = 3nQ(n) — Tn +2Q(n) + 2
1 .
From here
Boy=Li,/mpl 1 /x -1
E(/\)—2 7 Y3152 2n+0(n Js (2.36)
and )
ar()) = 8n ~ 3Q(n)12—- 4Q(n) -1
(2.37)
_(16-3mn 1 2 _Z so(n13)
- 24 6Vz @8\ /)
Since L(z) = 2M(z), the distribution of u is a shift of the distribution of );
we have
Bu) =B()-1=1,/22_ 2,1 /7 -1
E(u) =E(\) -1= V7 “3taVant Oo(n™"), (2.38)
and ( )
=) oy - U6=37n 1 Jrn  w -1/2
var(u) = var(\) = o 6‘/ 7 "t O(n~"/%), (2.39)

and the higher order central moments are also equal.
2.4. The distribution of »

In the case of a uniform distribution on F[n], the distribution of p is easy to
compute by direct arguments. Consider the sequence z, f(z), f3(z),..., for some
fixed . The probability of k distinct values in this sequence is clearly

nn-1)...(n-k+1)k _ knk

Pr(p=k) = Y = RERD

(2.40)
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hecause all pocsible sequences are equally likely.

Of course, we can also compute it from Theorem 1.16. We obtain

f’?(p:k):(l—k;l)(k—i nk=1 nzz

2k

Using formula (12) for the sum, and expressing falling power. as binomial coeffi-
cients we get

ﬁ-(p=k)=f‘_k.ﬂ(k_l)(k'1)'(k—l) n(k)f!_

n nk nk

_l_((n k+1)( _',:+1)(k—1)( _1)+( )k,)
Py ((:)k' (k—-1) + (:)k,> _ _’g%_

If we compare this result with Lemma 4 we see that for a uniform distribution
on F[n] the distributions of 7 and of p are identical. Hence, from equations (33)
and (34), we have

fl
l 3
Pt

3

E(o) = Q(n), (2.41)
and
var(p) = 2n — Q(n)? — Q(n). (2.42)
From equation (1.26) it follows that

n—3Q(n)? -2Q(n) +1

12 (2.43)
_(8=37m)n + 48 — 97 +0(n-1/3),

T 24 432

ov(\,p) =

and
4n - 3Q(n)2 -2Q(n) +1

8n - 3Q(n)2 -4Q(n) -1
3r—8  4(37-8)

~“3r—16 (37 —16)2

s —0.21668895... .

€or(A,u) =

(2.44)

+0( n~1)

This is quite a strong negative correlation. It means that if we chose a function f
and a point z, both uniformly at random, then if A(z, /) is large, it is very probable
that u(z, f) is small.
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2.5. The distribution of the number of cycles
The probability generating function for the number of cycles, 8, is
_ 1 i n k -k
=~ z‘:z 5’; (k) [i]kn , (2.45)

from Lemma 4 and equations (1.15). Its first factorial moments are obtained from
equations (1.19) and (1.20), via formula (5):

1 ﬂ.k n.’il
B'(1)==) —SkHi=3) —+ (2.46)
" sk
and
. 1 nk . 2 "
B"(1) =~ > —ck(HE - H{(1)
k>1
2.47)
1 n52Hk_1 (
_Z ((Hk—Hk—l)(Hk'i'Hk_l)—ﬁ) =Z:F k .
k" &

The probability that a function chosen uniformly at random over F[n} has a
connected graph is (Corollary 1.12)

5- ’ .
Pr(f=1) = ;1;,; g 9%‘—). (2.48)
>1

This is one of the earliest results about random mappings, due to Katz [Katz55].

To get the asymptotics of B'(1) (i.e., the expected number of cycles) we use
Theorem 3 with a = —2 and Lemma 2 with 8 = —1. We obtain

nk 0 o=2*/(2n)
B’(l) = Z n—k-}c— = (/l —-——;—- dz) (1 + O(n'l/2+‘)) + 0(1)

k21 (2.49)

= (In(2n)/2+ 0O(1)) (1 + O(n~Y3*¢)) + 0O(1) = l—n—ﬁ + O{1).

The average number of cycles in a random mapping was first computed (by
very different methods) by A. Kruskal [Kruskal54]. He obtained the more precise

estimate
In2n

B'(1) = —+ >t o(1). (2.50)

43

i T e
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ThLe asymptotics of B”(1) are somewhat more difficult. We first replace Hx_,
in equation (47) by Ink + v + O(1/k), and then use equation (49) and Theorem 3

to obtain Ik k
" nkin nk
B(l)—-ZZ——"w" Z-—+O(Z;k—ﬁ)
k>1 k>1 k21 (2.51)
_ nklnk ! o )
—22:;;;—,‘—4"7 nn+ (1)
k>1
Because (Inz/z)’ = (1-Inz)/z?, we can use Theorem 3 with, say, a = —1.99,
to get ‘ ,
(=]
ntlnk _ =10 BZ 42} (1 4+ 0(nY/3+) + 0(1). 2.52
k
n k 1 T
k>1
With the substitution y « 2z3/(2n) the integral becomes
/°° e~ /amInT g l/°° evIBV2RY
1 z 2 J1/(@an) y (2.53)

H o0 -y o0
____m2n/ -e——d +1/ ¢ ”I—n-qdy.
4 Jy@n) ¥ 1/(2n) y

We already computed the first integral in the proof of Lemma 2. We obtained

oo -y
/ fdy=In2n—~+0 ('“"). (2.54)
1/(2n) ¥ n
We can integrate the second integral by parts:
oo -y 2 oo
/ e” lnyd _____e (Iny) + -1-/ e V(lny)dy
1/(2n) y 2 1/2n) 2 J1/(2m)
(In 2n)2 1 / ® 2
= — bt - 2.55
7t o(1) + 5/, ¢ (lny)*dy (2.55)

2 .
= -—.(._12_;_’1)_. + 0(1),

because

00 o <]
0< / e VY(lny)dy < / e Y(lny)?dy
1/(2n) 0

) 1
< /1 e¥(Iny)? dy + /0 (lng)* dy = O(1).




s 5 S0 e T R 3 B i e o B e 8 s 850 e o s aren a0

Chapter £: The uniform distribution model

Figure 2.1. An encoding example.
It is obvious that the encoding is 1-1. Hence it suffices to count how many
possible legal words exist. First we remark that
1. The length of each word is exactly s + k.

2. Within the first s + k — 1 positions each of the k letters appears at least once,
and the first s positions contain the letters @j,..., &, in that order.

To construct a legal word:

e Partition the first k + s — 1 positions into k non-empty subsets such that
positions 1,..., s are in different subsets. (Each subset corresponds to a certain
letter.) This can be done in {**$~'} ways.

¢ Associate to the subsets containing the positions 1,..., s the letters a3,...,a;
in this order. To each of the remaining k — s subsets associate one of the
remaining k — 8 letters. ((k — s)! ways)

o Choose any letter for the last position. (k poesibilities)

From this construction it follows that

le(S,k)|=(k-—a)!k{k+:—l} , (2.59)

and therefore, by equation (58),

O TR o [P e (2:60)

41
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and finally
Pr(n(s)=k)=w=—}—§—:k{k+a—l} . (2.61)

nn rnenk k

As a quick check, note that by equation (10), we indeed have
k+s—-1
an(s k) = }: { . } =1 (2.62)
[}

Of more interest is the expected value of the size of the transitive closure, that

is the sum . " . .
, n= + 8-
E(n(s)) = — Z —kz{ k } . (2.63)
k Y ]

nk

For fixed s, combining equations (1), (8), and (9), we obtain the estimate

nt & n"k{ k }.-nlzn*k (23-—2)!!+o(k )

k
(2 -t g: 1;"Q( ) + 0(1) g’ 1;" +0(1).
(2.64)
Similarly
1 nk k+s-1
E(Kz(s)) = E;;Ik { k }‘
1 n!g k32 —
Bl z,; o ((2 —2n " O(k* 3)) (265)
s+1 s
- (2? )2)" +0(VR) =2sn +O(VA).
This implies that, for fixed s, we have

(23 )"

var(n(s)):an—(m) = 4 o(vA)- (2.66)

For small values of s it is possible to express {“" 1} as a polynomial in k and
use equation (7) to compute the exact values of the moments of x(s). The simplest
way to find these expansions is to start from the generating function ({Broder84a])

Z{£+r} 2 e 1™ m >0
e 2 0.
= m+r) sl m!
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After simple transforr tions (¥ « 1 + m; m «— m — r) we obtain

m+3 zﬂ-m—r e™2(e® — 1)—"
{7 e e L

Solom t+m-—r)! (m-r)!
so that ) (e* = 1)m=r
m+3 nisiy € o (ef =1)m"
{ m }' =(m-r+)ie) ——f5—, m2r, (2.67)

where the notation (z') G(z) means the coefficient of 2* in the power series expan-
sion of G(z) around z = 0.

The last expression can be easily computed within a formal manipulation
system by taking the ith derivative with respect to z. Both m and r can be left as
symbolic variables.

In our case we need to find {’”’;“}.. We obtain

k+o-1 et mty €5 = A
= - 1)=== — >
{71 sy SEST s,

and in fact this formula holds for any k > 1 because if 1 < k < s then (k — 1)2=1
equals 0, and so does {"*;‘1}..

The first expansions are

k+0
{ k}.‘“

k3 4+ =k -1, (2.68)

and from here, via equations (63) and (65),

E(x(1)) = Q(n);

var(x(1)) = 21 - Q(n)* - Q(n); (2.69)
E(n(2)) = 3nQ(n2)(; j ';)2Q(") = ;.\/;2_5_ 1+ g\/—g + O(n‘l); (2 70)

var(x(2)) = (12___83’_')_" - %‘/”23 + (I_Z%I_EQ +0(n~1/3);
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4572Q(n) — 25n2 — 1oan(n) + 38n + 12Q(n)
24(n-1)(n -

SHVERE- ‘31\/’+0( -1y, (2.71)

(768 - 225ﬁ)n 5 (17408 - 5895%) -
var(x(3)) = —is——- - § —E— + 2304 +O(n l).

E(x(3)) =

Il

If both s and n go to infinity such that s = o(n) it can be shown [Pittel83]

that
1 :—fk’{k +s8- 1} - \/237(1 + o(l))- (2.72)
k s

nt k

2.6.2. Random starting points

Now let’s assume that instead of taking the transitive closure of a fixed set of
size s, we start iterating a function f from s starting points chosen uniformly at
random, where, as before, f is chosen uniformly at random over F[n]. The size
of the transitive closure of s points so chosen is now denoted «(3). This notation
is inspired by the fact that the actual number of distinct starting points is only
approximately s, and in fact it is a random variable between 1 and s.

Let the chosen points be the sequence S = (a1,a3,.. .»8,). We encode each
function f € F[n] as a string of length n + s over the alphabet {1,...,7} of the

form
f e 1%(a1) fHa1)...f* (a1)
f°(az) f'(az)... f**(a2)
<. f%a,) fi(as) ... fi(a,)
7(61) 7(53) ...,

where §; is the smallest iterate of f such that f ‘(a,-) already appears in the string,
and where b;,b3,... are the elements of the set {1,...,n} — f*(S), in increasing
order.

For example, the encoding of the function in Figure 1, with

(41’42’331 44) = (3v 1,3,6),

e i o ot was i wan . o —
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Tlie resulting encoding can be inverted, reconstructing the function and the
starting sequence.

Assume that |f*(S)| = k. That means that, in the encoding, the length of
the prefix f%(ay)... f* (a,) is exactly k + s. The last letter must appear at least
twice. Preceding it there is an arbitrary string of length k + 8 — 1 over an n letter
alphabet, containing k distinct letters. Therefore we can construct a legal prefix
as follows:

e Partition the first k + s — 1 positions into k non-empty subsets. (Each subset
. . s [k+a—1
corresponds to a certain letter.) This can be done in {**{~'} ways.

e Choose k letters and associate each of them to a certain subset. (There are
(%) k! possibilities.)

e Choose any letter already chosen for the last position (k possibilities).
Once the prefix is fixed, it can be completed in n"~* ways to form a legal

encoding. Hence the probability of reaching k points from s random starting points
is

Pr(x(3) = k) = {" "’; - 1} (:) klkn=k=*, (2.73)
Vs
and the average number of reached points is
- 1 nk k+s—-1
E(K(s)) = ;‘—; Z -’:ikz{ k }. (2.74)
k1

Below are the expected value and the variance of k() for small s, computed
as explained in the previous subsection.

E(n(i)) = Q(n);

Var(ﬂ(i)) =2n ~ Q(n)z —_ Q(n); (2.75)
E(x(2)) = 3——Q(';) mLy g\/;?;— 1+ %\/;1:4- o(n=");
var(x(3)) = 26n=99(n)" ~ 8Q(n) +1 210

4
_(82-9mn 1 [rn 32-0Or

-1/3y.
) 22 T totrT)
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45nQ(n) - 25n +2Q(n) + 2

E(x(3)) =

/ﬁn 23 [= - L E

! B (768 - 2257r) 5 [An 3584 — 10357 ~1/2 -
{ var(x(3)) = 128 8V 2 ¥ 2304 (=5 ’

2.6.3. Digression — a combinatorial identity

Let S be a set of elements, each chosen uniformly at random. Another way to
derive Pr(x(5) = k) is to start from

Pr(x(3) =k) = Y_ Pr(|S|=i)Pr(x(i) = k)

- i;‘_{;’} (':)a Pr(x(i) = k).

Using now equations (61) and (73), we obtain

1k [kts—1] _ 1nt o fs]fk+i-1
n® nk k = ntnk ~ |i k Iy

and therefore we have the identity

S S U H I 5

Can we prove it by less intricate methods? The answer is yes and in fact we
can prove a more general case.

-0}

Proof: Consider the {™*} partitions of m white balls and s red balls into k non-
empty subsets. We can construct them by first partitioning the s red balls into ¢
non-empty subsets, and clumping each subset into a big red ball; then we add the
big red balls to the white balls and partition all of them into k non-empty subsets,
taking care to keep the big red balls in separate subsets. |}

T
PRI G

Theorem 8.
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2.7. The number of ancestors of one point

We say that y is an ancestor of z in f, if there exists an ¢ > 0 such that fiy) =z
The number of ancestors of a given point is denoted a. In this section we shall
compute the probability distribution of a assuming that all functions in F[n| are
equally likely.

Let A be the set of ancestors of a fixed point z. Any mapping such that z has
exactly k ancestors can be constructed as follows:

e Choose the k — 1 elements in A — {z}. (There are (?71) possibilities.)

o Using all the elements of A, construct a labelled tree rooted at z (Ic"" possi-
bilities).

* Choose a random function on the elements not in A. (There are (n — k)"~*
possibilities.)

e Choose some value for f(z) (n possibilities)

There are (}371)nk*=2(n — k)"~* ways to carry out this construction, and
therefore
n

Pr(a=k) = ;1;‘- (k) k*=Y(n — k)=, k>o0. (2.78)

It is reassuring to notice that by equation (21) we indeed have

= (:) Rl n— k) k= 1,

k>0

Remark that the probability that all the points 1,...,n are ancestors of a
certain element z is just 1/n, which is the same as the probability that z is a fixed
point (see Corollary 1.5). This suggests looking for a bijection between functions
where z has n ancestors and functions where z is a fixed point. Here is one
possibility. Assume that z has n ancestors in the graph of a certain function f,
which means that f has just one cycle and z is included in it. Suppose that the
cycle has the form z — a; — a3 = -+ — a;x — z. To the function f we associate
a function g, identical to f except for the points a;,...,ax and z. The cycles of g
are built by making z a fixed point, then splitting the string a;a; - - ax whenever
2 new maximum is encountered, and then considering each substring as a cycle.
This correspondence can be reversed and therefore defines a bijection. In fact, the
same idea works for any permutation invariant weight, and therefore we have

Theorem 9. For any permutation invariant weight the probability that all the
elements are ancestors of an element chosen uniformly at random is 1/n. 8

<«
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From equations (78) and (23) we obtain that

1 n
E(a) = — k*(n — k)% = Q(n), (2.79)
@ n '§ (k)
and N
)= = % )k"“(n —ipr= 3 R
?k k21 (2.80)
ntk _nQ(n)+n
E .Tc' 2 :
k>1
From here

nQ(n) + n - 2Q(n)?
2.

var(a) = (2.81)

The expected value for a is not unexpected; it can also be argued as follows.
Recall that p(z) is the number of descendants of z. For any function f whenever
y is a descendant of z, z is an ancestor of y. Hence

Doz f) =) v, f),
z v

and therefore, for any weight distribution, w,

E(p) =) E’—f{—) > o(z.f)
! z

= Zt—”% Za(z,f) = E(a).
f z

In particular for the uniform distribution E(p) = Q(n).
2.8. The number of ancestors of a set of points

Let now A be the set of ancestors of a fixed set of s elements, S = {a;,az,...,a,},
with @; < a3 < :++ < a,. Let a(s) be the size of A. We want to determine the
probability distribution of a(s). An arbitrary mapping such that |A| = k can be
constructed as follows:

e Choose the k — s elements in A — S. (There are (}Z2) possibilities.)

e Assume for the time being that f is such that ¢y - a3 — -+ = @, — a,
Choose for the k elements in A, a random mapping having exactly the cycle
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given above. It is easy to show via thc FF-encoding that there are sk*¥—*-1
such mappings.

¢ Choose a random mapping for the n — k elcents not in A. (There are (n —
k)™=* possibilities.)

* Assign arbitrary values to f at the points a;,az,...,a, (n* possibilities).

From this construction it follows that

n

Pr(a(s) = k) = -n—ln- (k : :)sk"—a—l(n _ k)n—kna (2 82)

- (") K2R~ (n — k)nk,

T nn-ene\k

As a quick check, note that

n:-l 2 (: _ :) kr=0=1(n — k)n-*

k
=== (" R 3) (k+9)* " n—s—k)"me=k =1,
k

from Abel’s identity (equation (20)) when z + s, n —n —s, and y « 0.

For the moments of the distribution of a we compute

Pr(a(s) =k k' = s n k_l_kk—u)-l—-l n—k n-k
; l'( () ) nn-cngg (k) ( )

_snigmnt (k-1
T ne - nk k Y

(2.83)

by equation (26). For fixed s and fixed I > 1 as n — oo this is (equations (1), (8),
and (9))

n® nk y— .
Z Pr(a(s) = k)k' = ikl Z — ((2—';2_—-;)7, + O(k”“")) +0(1)
k

nt s nk
- 8(2j ‘(23)':"2‘)-!;0(") + O(nx-z) (2.84)

25 — 3\l [x _
= 8( .(123' _)2).;! E+O(n' ).

57
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We can express the first momeats as a function of @(r), by expanding the ;
r-Stirling number as a polynomial in k and adding and subtracting the missing :

terms. We obtain that {
sn’ nk  sn’ nk ]
E(a(s)) = = Z - = —(Q(n) - Z ’_k') :
’ " >e n ns 1<k<s n=
| .
; = 2 (@) - (s -1 +0(n71) = /2 + 33’- - 82 +0(n"113),
| (2.85)
) and in a similar manner
E(a(s)) = S SR fk 1L _en fr o 60m)
Thwrznkl k f,72V2 T3 ‘ (2.:86)
From the last two equations, with the help of a computer, we obtain
— 22
var(a(s)) = % ”2—“ + Q’zﬂ -0(vn). (2.87)

For small s we can get nicer formulz:

E(a(1)) = Q(n),

n n n-— n 2
var(a(ty) = Q)£ 72000 9

_n [mm  (2-37)n 17 [ .
V7t e +24\/:.’11*'0(1)’

E(a(2)) = ?'?“Q';(E:)f—zﬁ
: var(a(1)) = n3Q(n) + n® — 4n?Q(n)? + 5n2Q(n) — 5n2 + 2nQ(n) )

(n-1)?

_ am (2-6r)n 39 [« i
—n1/ 7+ 3 +3 \/2n+0(1),

n2Q(n) -~ 6n%2 +3n
E(a) = 2 22

™ 37 [« -1
_3,/—2-—7+T\/2n+0(n ) (2.90)

var(a(3)) = 37"\/%-;4- (2= 9m)n "29”)" + %v’zzn +0(1).




Chapter 8
Pollard’s factorization method

Let p be a factor of a large integer N. Pollard’s Monte Carlo factorization
algorithm ([Pollard75],[Brent80]) finds p in average time O(/p). Pollard suggested
a tuning of his method for the case when a nontrivial factor d of p — 1 is known,
and conjectured that its running time is O(y/p/d ). Pollard and Brent [BP81]
used this improved method to factorize the eighth Fermat number, 225 4 1, using
d = 1024, and recently Gold and Sattler [GS83] ran a series of empirical tests that
agree with Pollard’s conjecture. Of course, in general, no such d is known, but the
improvement is relevant whenever p~ 1 has small factors, whether they are known
or not [GS83).

Pollard’s method is quite important in practice because although there are
several factorization algorithms that are asymptotically faster, they do not take
advantage of the existence of small factors. (See [Pomerance82] for a survey; the
best currert bound is O(exp(vin N Inln ¥ )), due to Schnorr and Lenstra [SL84].)
Hence it is preferable to use Pollard’s method first, to isolate the small factors, and
then to switch to a more sophisticated method. Another advantage of this method
is that it is extremely simple and can be implemented even on a hand calculator.
It is also possible to have a large number of simple processors running Pollard’s
algorithm on the same composite N, with no communication among processors.
(The expected speed-up is discussed in section 6.)

In this éhapter, we shall prove Pollard’s conjecture under a certain randomness
model.
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3.1. Poliard’s factorization method

A well known method for determining A(zo, f) and u(zo, f), for a given zg is the
following algorithm, due to Floyd [Knuth81, ex. 3.1.6|:

RN S YT B T S | N e, b s e

Z:=Zo; Y i= Zo; Ji= 0

repeat { now z =z, and y = z3; }

J=g+L
z = f(z);
v:=f(f(¥))
until z =y.

Why does this work? There exists a j > 0 such that z; = z3;. The minimum
such value is j = [u/A] A, for 4 > 0, and j = A for g = 0. Hence j = O(A + p).
Knowing 7 we can easily determine A and g, in time O(A + ). Therefore the whole
algorithm takes time O(X + u) = O(p). If all functions are equally likely then
according to the results of Chapter 2, E(p) = \/7n/2 + O(1).

There are more efficient algorithms for this problem, based on storing more
values of f in memory (see [SSY82] and [Fitch82] for detailed discussions). How-
ever, the benefits of the improved versions are not directly applicable to factoring
algorithms and do not change the essence of the analysis below.

Pollard’s factorization method is based on Floyd’s algorithm; f is chosen to
be some polynomial P(z) mod N, where N is the number to be factored. The
stopping condition is also modified as follows:

T = zo; Y 1= To; J :=0;

repeat { now z = P’(zo) mod N and y = P%(zo) mod N }
Ji=J+1

z := P(z) mod N;

y := P(P(y)) mod N;

until ged(|z - y|,N) > 1.

Assume that p divides N. By construction z;4+1 = P(z;) (modulo N), there-
fore z;41 = P(z;) (modulo p). The second congruence implies that for a certain
7 we have z; = za; (modulo p). At this point ged(|z; — z25|, N) is either N or a
proper factor of N. The first case can be shown to be improbable, but if it happens
we can try another starting point, or another polyncmial P.
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So far, we have not discussed what polynomial P to choose. If nothing is
known about the factors of N then we can take P(z) = z? + ¢, for some constant
¢ # 0, (see [BP81] and [Knuth81, §4.5.4] for some precautions) but if a factor d > 2
of p— 1 is known, Pollard [Pollard75] suggests taking P(z) = z% + ¢. In this case,
in the graph of P(z) mod p all the indegrees are eitker 0 or d (except for ¢). If no
factor of p—1is known, but p—1 contains small factors, we can use P(z) = z% +e,
with @ a product of small primes. Assume that ged(p-1, a) = d > 1; then again, in
the graph of P(z) mod p all the indegrees are either 0 or d (except for ¢). Pollard
conjectured that in this case E(p) = O(\/n/(d - 1) ), a v/d =1 improvement over
an arbitrary choice for P(z), at a cos* »f O(log d) more operations per iteration.

To determine the expected running time of the algorithm we must compute
the expected cycle length, and the expected tail length in such a.mapping. As in

other analyses of factorization algorithms, we assume that all such mappings (that -

is, where all the indegrees are either 0 or d) are equiprobable. Under this model,
we shall prove that Pollard’s conjecture is true. Deciding on the validity of such a
model is beyond the current state of knowledge in number theory, but experimental
results ([BP81}, [Knuth81], [GS83|, [Pollard83]) seem to confirm it.

Variants of this algorithm (e.g., [Brent80]) depend in a slightly different way
on A and g, but their running time is still essentially proportional to p.

3.2. The constant indegree model

Let’s consider the family ¥ of functions f : {1,...,n} — {1,...,n} such that
exactly n/d nodes have indegree d. (Here n represents the number p — 1 in the
factorization problem.) This family is not empty only if n/d is an integer, say m;
then ¥ has cardinality (";) n!/(d!)™. We define a permutation invariant probability
weight as follows: to each function in ¥ we assign probability (d!)™/( (%)n!) and
to all other functions f : {1,...,n} — {1,...,n} we assign probability 0. (In fact
this weight is strongly invariant.)

For this probability weight it is easy to see that

Pr(v> k) = I_;—I (;) (’:)k! @ —(1’;!)—"2!!)'""" (3.1)

because the trivial encoding of a function f with v > k can be constructed as
follows:

* Choose the m elements with indegree d. (There are () possibilities.)

e Choose k elements out of these m elements, to be the first k letters of Co(f).
(There are () ways.)

5’
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e Permute the first k elements {in one of k! ways).

e The remaining n — k letters are a permutation of k letters repeated d — 1
times and m — k letters repeated d times. (Hence the number of possibilities

is (n — &)1 ((d=1)1) (@) "M,

Expanding equation (1) we obtain

m) k! (n - k)t (d)™

kJ ((d-1)0*(d)™ *n!

_ (D" _ (n—krmiar _ (RT5)d*
B (V) T onl(m—-k) 2y

Pr(v>k)= (
| (3:2)

We are interested in the moments of the distribution of r. To obtain them we
shall consider the generating function

F(z) = }: Pr(r > k)2*. (3.3
k20

Clearly, the probability genarating function of r, C(z2), satisfies
1
Cls) = F(z) - 2 (F(2) - 1) (34)

hence
C'(1)=F(1) -1,
C"(1) =2F'(1) - 2F(1) + 2, : (3.5)
C"'(1) =3F"(1) —6F'(1) + 6F(1) — 6,

and so on. Now to obtain the derivatives of F we first write
F(z) = G(=d) /() | (3.6)

where

G(z) =Y (:;:l;)z" =y (" T ") 2=k (3.7)

k>0 k<m

This is related to the tail of a negative binomial distribution that can be replaced
by the tails of a binomial distribution, via the following theorem.
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Theorem 1. Let p be a probability, and let ¢ = 1 - p. We have

Z (r+};“ 1>pqu - Z (r:m)pr-#m—qu.

k<m k<m

Proof: We may assume that r is an integer. The term ('“,:"l)p'q" is the proba-
bility to obtain the rth success in a sequence of Bernoulli trials, after exactly r + k
trials. So that the left side is the probability to ¢btain the rth success in at most
r + m trials = the probability to fail at most m times in r + m trials.!

Ccorollary 2. If m is an integer and z, y, r are aroitrary,
r+k—-1\ , -k _ r+m\ x m-k
Z( f )z (z+y)™ —Z( A ).z:y .

k<m k<m
Proof: Multiply both sides of the identity in Theorem 1 by (z+y)™/p", and then
replace p « y/{z + y) and ¢g+—z/(z+y). B

Applying Corollary 2 to equation (), withre—n-m+1,z+1, ye—z-1

we get
G(2) = nt+1 z-1)"k 3.8
9= ("+He-v (3.4)
and hence
GW{z) = Z (n Z l) (m = k)Y(z - 1)m—*-4, (3.9)
k<m

Now we use the expansion?

(m—k)t=>%" (:) (=1)¥(m — §)'=tkt, (3.10)

! The standard proof [Pearson33| of this theorem is to use calculus of complex variables to
equate both sides to the tails of the Beta distribution. However after finding this proof, a careful
search of the literature showed that it was already published twenty five years ago [Patil60].

2 Proof: We repeatedly use the identities z° = (z +n - 1)2 and (-z)2 = (~1)"z" to obtain

(m-k)l= (1) (k-m) = (~1)(k-—m+l-1)

= (-1)! }: (:)ki(-m+l - 1)l=s

= Z (:)k"("l)‘(m -l 4+ l)i—_‘ = Z (:)k!(__l)l(m - ‘)l-_..
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to obtain

6% = 3 () wtm -t s 5 (P11
—Z()( 1)* (m—:)‘—(n+1)‘ ) (n+:_i)(z-—l)"“"'“‘".

k<m~s
(3.11)
Applying Corollary 2 again, this time in reverse, yields

c<'><z>=z()< S Dl G L B

[ k<im—¢

i 2 (5) i m it ieisio,
(3.12)

Siz)= Y (" - ': + ") 2™k = 5(2) - ogz«.- (;:i) 2, (3.13)

k<m-—s

where

We are most interested in G((2) when [ is small, hence the formula that
we have derived are actually “simple” to compute, in spite of their forbidding
appearance. We have

G(z) = So(z2);
mSo(z) — (n +1)z715,(2)

G'(2) = po
_ (mz —n~1)So(z) + (n+1)(]) )
z(z-1) '
G"(z) = m(m = 1)S¢(2) - 2(m = 1)(n + 1)z~15,(z) + n(n + 1)z~ zsz(z)

(z2-1)?
(3.14)

Let A = So(d)/(}). Since FU)(1) = d'GU)(d)/() and n = md, we find that
these equations simplify considerably:

F(1) =
+ 1-4
P =252 1 (3.15)
F"(l) = ((d l)ﬂ + 2d)A 2(n + l)d

(d-1)2




It remains to determine the asymptotic value of 4 = G(d)/(}). By equa-
tion (8) we can write this as

g e

k<sn
_ 1 5 (n“)(l)"(l 1)"“‘"
= Y @) d ~d :
(m) (d-1) k<(n+1)/d k d d

The sum is 1/2 + O(n~1/2), by the central limit theorem, since it is the sum of all
probabilities that are less than the mean value (n +1)/d of a binomial distribution.
And the leading coefficient is easy to evaluate by Stirling’s approximation:

1 dmd+1 _ V2rmm™\/2rm(d - 1) mm(d-1)
(r:‘d) (d = 1)md-m+1 - V2rr=d mmd

= /(14 o(m).
(3.17)
A= 1/5(7"-%5 +0(1). (3.18)

This analysis is sufficient to give the leading term in our asymptotic formulz,
but it is somewhat unsatisfactory since it does not make clear how we could obtain
better accuracy. For example, we might want to know the constant term of A.
The next section sharpens the asymptotics by looking closer at the left half of a
binomial distribution.

i

(3.16)

d -1
1= 1.(1+O(m )

Hence

3.3. Sums of Bernoulli random variables

We start from the following theorem due to Esseen [Esseend5|. (See also [GKes]
and [Petrov75).)

Theorem 3. If §,§32,...,€n are independent, identically distributed, random
variables, with mean 0, variance a?, and fnite third moment, as, such that the
only possible values of €, are a + vh for v = 0,%1,%2,..., and A is maximum,
then the cumulative probability distribution

Fa(z) = Pr(L; &/(Vno) < 2)
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satisfies

e */? ((1-z2%a; h (xaﬁ na fna
= &(z) 4 - e _na [nae -1/2
F.(z) = ®(z) + oo ( 3 T aS \ i [ ])) +o{n~1/%),

where ©(z) is the normal distribution,
(z) = —1-/: RILP?
LY ’

and S(z) is a discontiauous function® of z,

S(z)=[z] -z-1/2.

We are interested in the sum of n Bernoulli variables x;,x3,...,Xn, With
Pr(xx = 1) = p. Let £ = xx — p, and ¢ = 1 — p. Then E(£&) = 0, var(&:) = pq,
and a3(&) = pg® — gp® = pg(g — p). We can apply Esseen’s theorem with a = —p
and A = 1 to obtain

Yo b )
Pr (__._ <:z
VIPe
e=*/? ((1-2%)(q—-p) . S(z\/7pG+ np)
= &(z) + Worr ( Wi + = ) +0(n"1).

(We are allowed in this case to replace o(n~!/2) by O(n~!) because the fourth
moment is also finite. For details see [Esseen45] or [Petrov75].)

(3.19)

Making z = 0 and substituting xx — p for £x we obtain that

Z(k) Pt =0(0) + m(qspﬁnﬂ P“%)+O(n")

k<np (3.20) -

_1_ 1 _ _.p+l -1
2+——————m ([np] np— =2 )+O(n ).

3 The literature is a bit confusing with respect to this function, so maybe some clarification
necessary. In the original paper by Esseen, F,(z) is probably meant to be Pr(Z ;&/(Vvno) < 2).
There is no definition of F,(z) but there is a picture that implies that Fp(z) is continuous from
the nght Esseen uses instead of S, the function § = |z] — z + 1/2. Notice that S(z) = 5(z) for
all non-integral z; at integral points S(z) is continuous fzom the left, while $(z) is continuous
from the right. In [GK68] the cumulative probability distribution, Fn(z), is defined as above, but
the authors incorrectly use $. In [Petrov75] the function S is described by its Fourier expansion
only. Of course S and § have the same Fourier expansion ... ang in fact this is the source of
error in (GK68|.
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3.4. Better asymptotics

Settingn «~n+1, p+1/d, and ¢ — 1 -1/d, in equation (20) we can improve the
estimate of the sum in equation (16):

k<(§x)/d(n : 1) (§>k (1 ) é)m-k f

A
_1 d n+1] n+l1 1/d+1 -1 3.91
2+\/27m(d—1) ([ d ] d 3 )+O(n ) @2
D SRS WY £ 7 S S
=27 V2rn(d -1) ( 3 3) +0(n™).

Hence we obtain a more precise value for A:

A=, /2(:2 5+ zéj - f; +0(n~13), (3.22)

From here, using the equations (15), we obtain

_ nn 2(d-2)
F) =\/3@=9 * 3=y

, ™m d -
P =25~ Vaza-1s * 3(di i)z +0(n=1%); (3.23)

xnd 4(d+1)n
2(d-1)3 3(d-1)?

+ O(n"l/z);

F"(1) = +0(n!/2).

Finally, going back to the equations (5) and to the relevant equations in Chap-
ter 1, we obtain

n d+1

EO) =\za-n "s@-n o, (3.24)
- x d n |
var(r) = g‘(d L )1,), _ ;—1\/2_(7"1):+ o(1);
1 m d—-2 | -
E(\) = 5\/—2(7_3+ 3@=1) +0(n~Y3), (5.25)

_(16-37)n d+1 n .
var(}) = 2a[d=1) 6 \’2(d—1)3+0(1)'




G4 Chapter 8: Pollard’s factorization method

Efu) = ';' 2(;2 N 3(0;_—51) +071%),
(3.26)
_(16=37)n d+1 [wn )
var{p) = 24[d—1) "% 2(4—1)3+O(1)'
El) =37 * s + O,
(3.27)
var(p) = 2(:(; I);‘) _ d';' 1 ’2(‘1?1)3 + O(1);
cov(d, ) = (58% +0(1). (3.28)

These values confirm the constant term in a sharper form of Pollard’s conjec-
ture [Pollard82]. In principle, smaller order terms and higher order moments can
be computed by the same method, using smaller order terms in the estimate of the
tails of the binomial distribution.

3.5. The case d=2

This case is of special interest for two reasons: it corresponds to the frequently
used polynomial z2 + ¢ in Pollard’s method and we can obtain closed form formul=
that are a useful check on the general case.

If d = 2, by equation (13) and Corollary 2, withr «— m+1,z—1,andy « 1,
the sums S; are given by

o<k<i NV
2m+1 2m—-k\_,
=2 (7, )— Z'(m_k)2 (3.29)
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From here

F - 2" - ‘ﬂn ’ +O( _3/2

F'(l) =n- (3/2) +1=n- \/j+l+0(n‘l)

n n+2 o3
F'(1) = -2—"--4n+ 2 —4= \/ - 4n + O(n!/?).

(72) (d)

(We have used the expansion

-J_< +—+ - +0(m"")),

(2"‘) 128m?
which is easy to compute using Stirling’s formula.)

Going back one more step, we finally obtain

2n [xn 1 /~x
Ef)=—-1= ——-—1+—‘/—+0n'3/2,
() (n'/‘Q) vz 4V 2n ( )

22n on

(11,/‘2)2 —CF/.:)-
U LB o,

2! 1 fen 1 [x
) 2V 2 "8Van

n-2 n-1
=2 T ¥ 2

3 (u/?) ("73) 3
_(16=37)n 1 ﬂ+(32'3")
- 24 2V 2 48

var(r) = 2n - +2

= UZIn 1 [T 028-21n) oy

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)
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2" 2" 1
E(p) = -14 — - =
(n72) n(n/l) n
_Jm s 1 -3/2 | 3.35
V7 'tV aRt O(n=%?%), (3.35)
4—-7)n ™m 24 - 57 -
var(p)=( 2) ?+( y )+O( 1),

22"—2 4 22!\—1 2'\—1 1
= 3 + 7~ -—
3 (n72) 3 n(n';Z) n("73
(8—3r)n 64 —157

— -1
= 2 + M +O(n™?%).

(3.36)

Comparing these with the corresponding formula for the uniform case (equa-
tions (2.35) and following) shows that the leading terms are unaffected, but the
next terms decrease very slightly.

3.6. The parallelization of Pollard’s factorization algorithm

Suppose that we have s processors simultaneously running Pollard’s algorithm
trying to factor the same number. What is the expected speed-up? More precisely,
what is the expected value of the minimum running time to completion, over the
s processors? As a model, let’s assume that processor 1 computes the length of
the period and of the cycle of a random function f; € F[n| (in fact a polynomial)
starting from the point z;. We need to compute

E(min(P(fl’zl),p(fh 22),. .o ap(fn zo)))-

We consider two cases. The first case is that each processor chooses its function
uniformly at random over the n™ possible functions. Then the following theorem
applies.

Theorem 4. Let fi1,f2,...,fs : {1,...,n} = {1,...,n} be s mappings chosen
uniformly at random in F|[n|. For any fixed choice of z;,z3,...,z,

Bmin(o(,2olnza) o)) = 5 ((5) ) =32 + 000

k>1
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Proof: From the results of Section 2.4 it follows that if f; is chcsen uniformly at
random, then

Pr(o(finz) 2 &) = Pr(u(f) 2 ) = 2.

Because p(f1,z1),0(f2,22),...,0(fs,z,) are independ:nt random variables, we
have

nk*
Pr(min(o(fu 20 22) oo o0lfz) 2 ) = (55 )

and

. nk\
E(min(P(fl,:Cx),p(fz,‘Cg),...,p(f.,z,))) = E(""‘) .

For a fixed s and every k,

() = JL(-3)"- I (-2 +o(5))

If k > n/s then the term nk/n* is clearly exponentially small and therefore

k

;(:—f)‘ = 15§n/.(:_:). + exponentially small terms
n/s)k
xsgn/. E";s;k <1 *o (:—z))
- 2 oo 2 i)

1<k<n/s 1<k<n/e

It is easy to see that

n/s)k
Anis)) s Y L2 < oinss),

1<kanys (M/9)

and hence

n/s k m

1<k<n/s
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In a similar manner

1 3 o3 (n/s)kk® _ 1 3 a3
;;‘fQ[n/aj(l)z '3 1---) < l<k§<:“/‘ (n/s)";:i < ;{EQ[n/c](lyz y3 )“-)v

and from equation (2.8) it follows that

n/s)k k8 2 - -
2 En,/s;"ﬁ =atolk 2)-
1<k<n/e

Putting everything back together, we obtain that

,§,<'—§>. = \/z—f+0(1).

Hence if every processor uses an independently chosen random function then
the speed-up is O(y/s), where s is the number of processors. (Compare with
equation (2.41).) The second case to consider is that all processors use the same
function but different starting points. However, via very genera! principles, it can
be shown that this strategy is never better than the first strategy.

We need now to compute

E(min(p(f,21), 0(f, 22), .-, 0(f, 24))),

where f is chosen uniformly at random in F|[n| and z,,z3,...,2z, are chosen uni-
formly at random in {1,...,n}.

Define b(f, k) to be the probability that p(f,z) > k when z is chosen uniformly
at random. This means that nb(f,k) is the number of (bad!) points z such that
p(f,z) > k. Then the probability that the second strategy requires more than k
steps is

Pr(min(p(f,z1),0(f,232),...,0(f,2,)) 2 k) = Z -b—(-l-'-,—"i)—‘-, (3.37)

JEF(n]
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while the probability (which we already computed) that the first strategy
requires more than k steps is

Pr(min(p(f1,21),0(f2:Z2)s+ -2 8(f0r 74)) > k) =< 5 9%—,.'51) (3.38)

JE€F|n]

We shall now show that
5(f,k))° ‘
n" n"
J€F(n] JEF|n] ‘
regardless of the actual values of &(f, k), and therefcre

E(min(p(f,z1), p(f,22)s -+, 0(f, 7))

> E(min(p(fu,21), olfn,22)s oo plfanza))). )

We start from

Theorem 5. Let z; <z < --+ < z,, be m real points. Any real function f such
that f"(z) exists and f"(z) > O on the interval [z, 2| satisfies

> i E )

1<i<m 1<i<m
Proof: See [HLP59] page 72. 8

Applying now Theorem 5 to the function f(z) = z*, we obtain that for any
collection of m positive points, z;,z32,...,Zm, we have

> En%?_( ) ;fni)', (3.41)

1<i<m 1<s<m

and in particular

b(f,k))* .
n" nn
JEF(n] J€F|n]
which is the inequality we wanted to prove.

In conclusion, if s processors are running Pollard’s algorithm in parallel, they
should run it with different polynomials, for an expected speed-up of /s. The
strategy of using the same polynomial and different starting points is inferior on
average. Although the gain is relatively small compared with the number of pro-
cessors used, the parallel version of Pollard’s algorithm might be a good choice in
certain situations (e.g., vector machines) because no communication is rejuired.

AT s 5
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3.7. Open problems

The obvious, but probably hopeless question is how accurately the model used here
for Pollard’s method reflects reality.

Another problem, more amenable vo solution, is to compute the expected
values of A and u if every node has indegree either a, or b, or 0; more generally
one can ccnsider a given indegree probability distribution, or other distributions
closely related to the polynomials that are actually used.
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Appendiz A

A bibliography of random mappings

This appendix is not an exhaustive list of the literature on random mappings, but
might constitute a starting point for an exhaustive search. In particular, results
on random graphs that are not specific to random mappings were omitted. Papers
already mentioned in the “References™ section are marked with an asterisk.
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Appendiz B
A strange example

This an example of a permutation invariant weight for which the correlation of A
and u is positive. Consider the following probability weight on F[n]:

€ if Co(f) is a permutation of 1,1,...,1,2,2,3;
w(f) =< 1-n(n-1)(n-2)¢/2, ifCo(f)=11,...,1;
0, otherwise.

Clearl, this weight is permutation invariant. The probability generating func-
tion for the number of cyclic elements is

C(2) = (1 - (3n® - 13n + 14)€)z + (3n® — 19n + 32)2% + 6(n — 3) 23

Using the relevant equations from Chapter 1, it can be shown that

— n 20 38 2 (St  39n%  157n3
covi\,p)=e|{-——+—) —¢

37 0:3'52
2 B.x Snf 3907 _ _n+1+).

4 2 4 n

Therefore if, say, n = 100 and € = 107, then the covariance is positive. (Namely,
it is equal to 0.000001529... .)
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